Discussion on Some Practical Equations with Implications to High‐Frequency Surface‐Wave Techniques
نویسندگان
چکیده
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting—the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model.
منابع مشابه
Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations
In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...
متن کاملRayleigh Surface Wave Propagation in Transversely Isotropic Medium with Three-Phase-Lag Model
The present paper is dealing with the propagation of Rayleigh surface waves in a homogeneous transversely isotropic medium .This thermo-dynamical analysis is carried out in the context of three-phase-lags thermoelasticity model. Three phase lag model is very much useful in the problems of nuclear boiling, exothermic catalytic reactions, phonon-electron interactions, phonon scattering etc. The n...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملSound Wave Propagation in a Multiferroic Thermo Elastic Nano Fiber Under the Influence of Surface Effect and Parametric Excitation
This study investigates that the sound wave propagation of multiferroic thermo elastic Nanofibers under the influence of surface effect and parametric excitation via Timoshenko form of beam equations. The equation of analytical model is obtained for Nanofiber through shear and rotation effect. The solution of the problem is reached through the coupled time harmonic equations in flexural directi...
متن کاملFrequency Analysis for a Timoshenko Beam Located on an Elastic Foundation
It is quite usual to encounter a beam with different types of cross section or even structuraldiscontinuities such as a crack along its length. Furthermore, in many occasions such a beam mayhappen to be exposed to the oscillatory fluctuations. Therefore, any information about its naturalfrequencies may be worthwhile. Amongst the problems of discontinues beam analysis, in this paper aspecial kin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005